4-1.Complex numbers
hard

माना $\left(-2-\frac{1}{3} i\right)^{3}=\frac{x+i y}{27}(i=\sqrt{-1})$, जहाँ $x$ तथा $y$ वास्तविक संख्यायें हैं, तो $y - x$ बराबर है

A

$91$

B

$-85$

C

$85$

D

$-91$

(JEE MAIN-2019)

Solution

$\left(-2-\frac{i}{3}\right)^{3}=\left(\frac{x+i y}{27}\right)$

$(-1)^{3}\left(2^{3}+\frac{i^{3}}{27}+3(2) \frac{i^{2}}{9}+3(2)^{2} \cdot \frac{i}{3}\right)=\frac{x-i y}{27}$

$-\left[8-\frac{i}{27}-\frac{2}{3}+4 i\right]=\frac{x+i y}{27}$

$\Rightarrow \frac{x}{27}=-8+\frac{2}{3}$

$\text { and } \frac{y}{27}=\frac{1}{27}-4$

$\frac{y-x}{27}=\frac{1}{27}-4+8-\frac{2}{3}$

$=\frac{1+27 \times 4-18}{27}$

$=\frac{109-18}{27}$

$=\frac{91}{27}$

$\Rightarrow y-x=91$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.